Recursive Finite Newton Algorithm for Support Vector Regression in the Primal
نویسندگان
چکیده
Some algorithms in the primal have been recently proposed for training support vector machines. This letter follows those studies and develops a recursive finite Newton algorithm (IHLF-SVR-RFN) for training nonlinear support vector regression. The insensitive Huber loss function and the computation of the Newton step are discussed in detail. Comparisons with LIBSVM 2.82 show that the proposed algorithm gives promising results.
منابع مشابه
Least Squares Support Vector Machines and Primal Space Estimation
In this paper a methodology for estimation in kernel-induced feature spaces is presented, making a link between the primal-dual formulation of Least Squares Support Vector Machines (LS-SVM) and classical statistical inference techniques in order to perform linear regression in primal space. This is done by computing a finite dimensional approximation of the kernel-induced feature space mapping ...
متن کاملPredicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm
The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach co...
متن کاملA HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کاملSelecting a Reduced Set for Building Sparse Support Vector Regression in the Primal
Recent work shows that Support vector machines (SVMs) can be solved efficiently in the primal. This paper follows this line of research and shows how to build sparse support vector regression (SVR) in the primal, thus providing for us scalable, sparse support vector regression algorithm, named SSVR-SRS. Empirical comparisons show that the number of basis functions required by the proposed algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Computation
دوره 19 شماره
صفحات -
تاریخ انتشار 2007